Different Types of Fibrillation Potentials in Human Needle EMG

نویسنده

  • Juhani Partanen
چکیده

Rhythmic fibrillation potentials are the hallmark of denervated muscle fibres in needle EMG of a striated muscle (Conrad et al. 1972, Heckmann & Ludin 1982). They are readily activated by the insertion of an EMG needle electrode (Kugelberg & Petersén 1949). Irregular fibrillation potentials may also be present (Buchthal & Rosenfalck 1966, Purves & Sakmann 1974). There is, however, an obvious difficulty to discriminate between true irregular fibrillation potentials of a denervated muscle and end plate spikes, which occur in a normal muscle. This may lead to the conclusion that only rhythmic fibrillation potentials matter (Stöhr 1977). We have pointed out that fibrillation potentials, whether regular or irregular, have longer minimum interpotential intervals than end plate spikes (Partanen & Danner 1982). During long sequences, the mean interval between successive end plate spikes and rhythmic fibrillation potential tends to increase, whereas irregular fibrillations do not show this type of “self-inhibition” (Partanen & Danner 1982, Partanen & Nousiainen 1983). The aim of this chapter is to describe fibrillation potentials of different categories in either completely or partially denervated human limb muscles, or after a muscle injury. We also compare the characteristics of fibrillation potentials to neurally driven sequences, such as “myokymic” fibrillation potentials and end plate spikes (Brown & Varkey 1981, Partanen & Nousiainen 1983, Partanen 1999). “Myokymic” fibrillation potentials are a rare phenomenon of innervated muscle fibres. They have not been described earlier and are readily confused with end plate spikes. The term “myokymic” fibrillations is descriptive. The pathophysiology of “myokymic fibrillation” is different from true myokymia of whole motor units (see Willison 1982, Stålberg & Trontelj 1982).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromyography Based Hand Control Signals: a Review

Electromyography (EMG) is the analytical study of electrical activity produced by skeletal muscles. EMG is an example of modern human computer interaction which can be used in the field of medicines and engineering. Through this paper we are going to discuss about different types of EMG-Surface EMG(SEMG)/surface scanning EMG and intramuscular/ indwelling (needle and fine-wire) EMG, the electric...

متن کامل

Clinical Characteristics and Analysis of CLCN1 in Patients with "EMG Disease"

BACKGROUND AND PURPOSE While the etiology and clinical features of "EMG disease" - which is characterized by diffusely increased insertional activity on needle electromyography (EMG) in the absence of neuromuscular disease - are not well known, some authorities believe it may be a form of myotonia congenita (MC). The aims of this study were to determine the clinical features of EMG disease and ...

متن کامل

Zebrafish needle EMG: a new tool for high-throughput drug screens.

Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafi...

متن کامل

Emg Signal Noise Removal Using Neural Netwoks

The bioelectric potentials associated with muscle activity constitute the Electromyogram, abbreviated as EMG. These potentials may be measured at the surface of the body near a muscle of interest or directly from the muscle by penetrating the skin with needle electrodes. Since most EMG measurements are intended to obtain an indication of the amount of activity of a given muscle, or group of mus...

متن کامل

Letters to the Editor Distribution of Fibrillation Potentials in Radiculopathies

The report by Dillingham et al. questions the general electromyographic (EMG) wisdom that fibrillation potentials develop and resolve earliest in proximal muscles in a damaged root distribution. The data presented do not allow the authors to make such a judgment. Apparently, patients were selected for entry into the study based on EMG features of cervical radiculopathy requiring denervation in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013